Abstract

Salt-sensitive hypertension in humans and experimental animals causes progressive increases in renal damage and dysfunction. The Dahl salt-sensitive (S) rat closely mimics human salt-sensitive hypertension. Our goal was to test the hypothesis that enhancing the glutathione system with dietary N-acetylcysteine administration in Dahl S rats on a high sodium intake for 5 weeks will attenuate the increases in arterial pressure, the decreases in renal hemodynamics and the increases in renal damage that normally occur in S rats on high sodium. Forty-four 7- to 8-week-old Dahl S/Rapp strain rats were maintained on a high sodium (8%), high sodium + N-acetylcysteine (4 g/kg per day), or low sodium (0.3%) diet for 5 weeks. Rats had arterial and venous catheters implanted at day 21. By day 35 in the high-sodium rats, N-acetylcysteine treatment significantly increased the renal reduced-to-oxidized glutathione ratio, glomerular filtration rate, and renal plasma flow, and decreased renal cortical and medullary O2 release, urinary protein excretion, renal tubulointerstitial damage and glomerular necrosis. At this time, mean arterial pressure increased to 183 +/- 1 mmHg, and N-acetylcysteine reduced this arterial pressure to 121 +/- 4 mmHg. By day 35 in S high-sodium rats, N-acetylcysteine had caused a 91% decrease in glomerular necrosis and an 83% decrease in tubulointerstitial damage. In Dahl S rats on high sodium intake, arterial pressure increases significantly and renal injury is pronounced. Treatment with N-acetylcysteine enhances the renal glutathione system, improves renal dysfunction and markedly decreases arterial pressure and renal injury in Dahl salt-sensitive hypertension.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.