Abstract
N'-(3'-Monophosphodeoxyguanosin-8-yl)-N-acetylbenzidine (dGp-ABZ) is the major adduct in exfoliated urothelial cells and in peripheral white blood cells of workers exposed to benzidine. This study was designed to assess the metabolic pathways leading to dGp-ABZ formation in human peripheral white blood cells. [(3)H]-N-Acetylbenzidine (ABZ) transformation was assessed using myeloperoxidase (MPO), hypochlorous acid (HOCl), and human peripheral white blood cells in the absence and presence of DNA or dGp. MPO metabolism required H(2)O(2), but not NaCl. While transformation by HOCl was completely inhibited by 10 mM taurine, the level of metabolism of ABZ by MPO was only reduced 56%. Transformation by either MPO or HOCl was inhibited by 100 mM DMPO, 1 mM glutathione, and 1 mM ascorbic acid. Glutathione formed a new product with MPO, but not with HOCl. Previously identified oxidation products of ABZ, N'-hydroxy-N-acetylbenzidine or 4'-nitro-4-acetylaminobiphenyl, were not detected. With DNA or dGp present, a new product was observed that corresponded to synthetic dGp-ABZ in its HPLC elution profile, in nuclease P(1) hydrolysis to dG-ABZ, and in (32)P-postlabeling analysis. The HOCl-derived adduct was identified by electrospray ionization mass spectrometry, with collision-activated dissociation, as dGp-ABZ. Metabolism of [(3)H]ABZ by peripheral blood cells was stimulated about 3-fold with 30 ng/mL beta-phorbol 12-myristate 13-acetate (PMA). Using (32)P-postlabeling, dGp-ABZ was detected only in the presence of PMA and its level was increased more than 300-fold if either 0.7 mg/mL DNA or dGp was present. Indomethacin (0.1 mM) did not alter adduct formation. With dGp, dGp-ABZ formation could be detected with as little as 0.12 x 10(6) neutrophils. Using specific chromatographic and enzymatic techniques, neutrophil-derived dGp-ABZ was identical to the synthetic standard. Thus, these results are consistent with human polymorphonuclear neutrophils forming dGp-ABZ by a peroxidatic mechanism involving MPO.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.