Abstract

Glial cell hyperpolarization previously has been reported to be induced by high frequency stimulation or glutamate. We now report that it also is produced by the glutamate-containing dipeptide N-acetylaspartylglutamate (NAAG), by its non-hydrolyzable analog β-NAAG, and by NAAG in the presence of 2-(phosphonomethyl)-pentanedioic acid (2-PMPA), a potent inhibitor of the NAAG degradative enzyme glutamate carboxypeptidase II. The results indicate that NAAG mimics the effect of nerve fiber stimulation on the glia. Although glutamate has a similar effect, the other presumed product of NAAG hydrolysis, N-acetylaspartate, is without effect on glial cell membrane potential, as is aspartylglutamate (in the presence of 2-PMPA). The hyperpolarization induced by stimulation, glutamate, NAAG, β-NAAG, or NAAG plus 2-PMPA is completely blocked by the Group II metabotropic glutamate receptor antagonist ( S)-α-ethylglutamate but is not altered by antagonists of Group I or III metabotropic glutamate receptors. The N-methyl- D-aspartate receptor antagonist MK801 reduces but does not eliminate the hyperpolarization generated by glutamate, NAAG or stimulation. These results, in combination with those of the preceding paper, are consistent with the premise that NAAG could be the primary axon-to-glia signaling agent. When the unstimulated nerve fiber is treated with cysteate, a glutamate reuptake blocker, there is a small hyperpolarization of the glial cell that can be substantially reduced by pretreatment with 2-PMPA before addition of cysteate. A similar effect of cysteate is seen during a 50 Hz/5 s stimulation. From these results we suggest that glutamate derived from NAAG hydrolysis appears in the periaxonal space under the conditions of these experiments and may contribute to the glial hyperpolarization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call