Abstract

The scope of this Paper is to investigate the integration effects of turboprop engines on a high-lift wing with an internally blown plain flap system with Reynolds-averaged Navier–Stokes computations. It is shown that the resulting nacelle vortices can significantly reduce the high-lift performance at zero thrust conditions. To limit the negative impact, an inboard nacelle strake was designed with the aim of maximizing the lift coefficient of the landing configuration at zero thrust. To reach this goal, a sensitivity study on basic geometric strake parameters was carried out. The best nacelle strake is able to improve the maximum lift coefficient by and the maximum angle of attack by 3 deg. The study also reveals the further potential of improvement due to an additional outboard strake. First simulations with outboard strake lead to a further improvement of and 4 deg in the maximum angle of attack. It is also shown that the installation of an inboard strake does not negatively impact the high-lift performance at a moderate thrust level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.