Abstract

Recent studies have demonstrated a relative deficiency in voltage-gated Ca2+ currents (ICa) in immature myocardium. We hypothesized that contraction in developing heart results in part from Ca2+ influx via "reverse" Na+/Ca2+ exchange current (INa/Ca). Accordingly, INa/Ca and cell contraction amplitude were measured in single neonatal and adult rabbit ventricular myocytes. INa/Ca was dependent on Ca2+ concentration, Na+ concentration, and membrane potential and was blocked by 5 mM Ni2+ but not by the Ca(2+)-channel blocker nifedipine. In neonatal cells, contraction amplitude reached a plateau for depolarizations positive to 0 mV. In adult myocytes, contraction amplitude was maximal at 0 mV and decreased at positive membrane potentials. Inhibition of ICa with nifedipine did not affect maximal contraction amplitude in neonatal myocytes but almost completely suppressed contraction of adult cells. These data suggest that Ca2+ influx via ICa is not required for contraction of neonatal rabbit cardiac myocytes. Moreover, Ca2+ influx via reversal of the Na+/Ca2+ exchange mechanism may provide a significant portion of the Ca2+ regulating cell contraction, especially during depolarization to positive membrane potentials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.