Abstract
An ultra-thin and super-long Na₂V₆O₁₆·xH₂O nanoribbon of ∼5 nm thickness and ∼500 μm length was synthesized by a hydrothermal method, using a freshly prepared V(3+) species precursor solution by directly dissolving a vanadium metal thread in a NaNO₃ solution using a solid-liquid phase arc discharge (SLPAD) technique. Field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) techniques were used to characterize the structure, morphology, and chemical composition. The super-long and ultra-thin geometry of the Na₂V₆O₁₆·xH₂O nanoribbons is proven to greatly promote the photocatalytic activity toward reduction of CO₂ into renewable hydrocarbon fuel (CH₄) in the presence of water vapor under visible-light irradiation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.