Abstract

AbstractSodium bismuth titanate‐based materials are expected to be an alternative candidate to lead‐based ceramic materials due to their excellent electrical properties. However, the low depolarization temperature (Td) limits their practical application. In this work, the phase structure evolution and microstructure of 0.9(0.4Na1/2Bi1/2TiO3–0.6BiFeO3)–0.1BaTiO3: xZnO (x = 0.01, 0.03, 0.05, and 0.07) (abbreviated as 100xZnO) composite ceramics are investigated, and their piezoelectric properties are improved by combination of constructing 0–3 type composites and quenching treatment technology. The addition of ZnO can increase both Td and d33 because ZnO can enhance the lattice distortion of rhombohedral phase and lead to the increase in ferroelectric order. Specifically, the optimum composition x = 0.03 obtains the d33 value of 106 pC/N (25°C), which retains 84% of the value at room temperature up to 240°C. And the quenching technology further enhances the ferroelectric order and increases Td, which is up to 280°C for x = 0.03.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.