Abstract

Although sodium ion batteries (NIBs) have gained wide interest, their poor energy density poses a serious challenge for their practical applications. Therefore, high-energy-density cathode materials are required for NIBs to enable the utilization of a large amount of reversible Na ions. This study presents a P2-type Na0.67Co1-xTixO2 (x < 0.2) cathode with an extended potential range higher than 4.4 V to present a high specific capacity of 166 mAh g-1. A group of P2-type cathodes containing various amounts of Ti is prepared using a facile synthetic method. These cathodes show different behaviors of the Na+/vacancy ordering. Na0.67CoO2 suffers severe capacity loss at high voltages due to irreversible structure changes causing serious polarization, while the Ti-substituted cathodes have long credible cycleability as well as high energy. In particular, Na0.67Co0.90Ti0.10O2 exhibits excellent capacity retention (115 mAh g-1) even after 100 cycles, whereas Na0.67CoO2 exhibits negligible capacity retention (<10 mAh g-1) at 4.5 V cutoff conditions. Na0.67Co0.90Ti0.10O2 also exhibits outstanding rate capabilities of 108 mAh g-1 at a current density of 1000 mA g-1 (7.4 C). Increased sodium diffusion kinetics from mitigated Na+/vacancy ordering, which allows high Na+ utilization, are investigated to find in detail the mechanism of the improvement by combining systematic analyses comprising TEM, in situ XRD, and electrochemical methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call