Abstract
Na-ion batteries (NIBs) are promising devices for large-scale energy-storage facilities. Nanostructured TiO2 is an efficient NIB negative electrode, showing good cycling performance and rate capability, but its activity depends on the crystalline facets exposed by anatase nanoparticles. Hence, we propose here a DFT+U study of Na+ adsorption and insertion at (101), (100) and (001)-TiO2 surfaces under the influence of external electric fields, which are simulated by adding a sawtooth-like electrostatic potential to the bare ionic potential. We find that field polarization affects Na+ uptake as well as titania electronic features, promoting redox processes within Ti sublattice, as in battery charge/discharge cycling. Our results highlight the high-energy (001) surface to be the most active, for both directions of external fields, proving its activity to be exerted reversibly. Besides further insights, these outcomes pave the route for further exploration and design of electrode materials by simulation of battery in operando conditions.Graphical
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.