Abstract
Previous impedance analysis studies of intact epithelia have been complicated by the presence of connective tissue or smooth muscle. We now report the first application of this method to cultured epithelial monolayers. Impedance analysis was used as a nondestructive method for deducing quantitative morphometric parameters for epithelia grown from the renal cell line A6, and its subclonal cell line 2F3. The subclonal 2F3 cell line was chosen for comparison to A6 because of its inherently higher Na+ transport rate. In agreement with previous results, 2F3 epithelia showed significantly higher amiloride-sensitive short-circuit currents (Isc) than A6 epithelia (44 +/- 2 and 27 +/- 2 microA/cm2, respectively). However, transepithelial conductances (GT) were similar for the two epithelia (0.62 +/- 0.04 mS/cm2 for 2F3 and 0.57 +/- 0.04 mS/cm2 for A6) because of reciprocal differences in cellular (Gc) and paracellular (Gj) conductances. Significantly lower Gj and higher Gc values were observed for 2F3 epithelia than A6 (Gj = 0.23 +/- 0.02 and 0.33 +/- 0.04 mS/cm2 and Gc = 0.39 +/- 0.16 and 0.26 +/- 0.10 mS/cm2, respectively). Nonetheless, the cellular driving force for Na+ transport (Ec) and the amount of transcellular Na+ current under open-circuit conditions (Ic) were similar for the two epithelia. Three different morphologically-based equivalent circuit models were derived to assess epithelial impedance properties: a distributed model which takes into account the resistance of the lateral intercellular space and two models (the "dual-layer" and "access resistance" models), which corrected for impedance of small fluid-filled projections of the basal membrane into the underlying filter support. Although the data could be fitted by the distributed model, the estimated value for the ratio of apical to basolateral membrane resistances was unreasonably large. In contrast, the other models provided statistically superior fits and reasonable estimates of the membrane resistance ratio. The dual-layer model and access resistance models also provided similar estimates of apical and basolateral membrane conductances and capacitances. In addition, both models provided new information concerning the conductance and area of the basolateral protrusions. Estimates of the apical membrane conductance were significantly higher for 2F3 (0.79 +/- 0.23 mS/cm2) than A6 epithelia (0.37 +/- 0.07 mS/cm2), but no significant difference could be detected for apical membrane capacitances (1.4 +/- 0.04 and 1.2 +/- 0.1 microF/cm2 for 2F3 and A6, respectively) or basolateral membrane conductances (3.48 +/- 1.67 and 2.95 +/- 0.40 mS/cm2). The similar basolateral membrane properties for the two epithelia may be explained by their comparable transcellular Na+ currents under open-circuit conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.