Abstract

As a novel anode material for Na-ion battery, we evaluated rutile-type TiNbO4 synthesized by a sol−gel method. It was revealed for the first time that TiNbO4 showed reversible reactions of Na+-insertion and Na+-extraction in the potential ranges of 0.005–1.0 and 0.6–1.6 V vs. Na+/Na, respectively. TiNbO4 maintained its rutile structure even after charge−discharge cycling. The size of Na+ diffusion path along its c-axis was broadened with increasing Nb amount in TiNbO4, leading to the improvement in the reversible capacity. The TiNbO4 electrode with Nb 48 at.% exhibited a high capacity of 360 mA h g−1. The long-term cyclability and rate capability were also improved by increasing Nb amount. We consider that the wider space in the diffusion path increases the degree of freedom of Na+ occupancy position, which weakens the electrostatic repulsion between Na+ and Na+ to increase Na storage capacity. These results clearly demonstrate that TiNbO4 can be applied as a promising anode material.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call