Abstract
In the present study, we investigated the role of intracellular Ca++ in the stimulation of the Na+/K+/Cl- cotransport in synchronized BALB/c 3T3 cells. The Na+/K+/Cl- cotransport was stimulated by the growth factors EGF, TGF-alpha, IGF-1, and IGF-2, which do not activate protein kinase C, but do induce a transient increase in free cytoplasmic Ca++. In addition, direct activation of protein kinase C by the phorbol ester 12-O-tetradecanoyl-phorbol-13-acetate (TPA) did not affect the Na+/K+/Cl- cotransport activity of quiescent cells. The Na+/K+/Cl- cotransport was also stimulated by the above mitogens in cells pretreated with the phorbol ester TPA. This treatment led to a progressive decline in the activity of cellular protein kinase C. This result implies that cells deficient in protein kinase C may still support stimulation of the Na+/K+/Cl- cotransport. Taken as a whole, these findings suggest that the Na+/K+/Cl- cotransport is stimulated predominantly by a protein kinase C-independent mechanism in BALB/c 3T3 fibroblasts. Both the intracellular Ca++ antagonist 8-(N,N-diethylamino)octyl-3,4,5-trimethoxybenzoate (TMB-8) and two potent calmodulin antagonists, trifluoperazine (TFP) and chloropromazine (CP), blocked serum- and mitogen-stimulated Na+/K+/Cl- cotransport. These results suggest that the Na+/K+/Cl- cotransport is stimulated by an increase of intracellular Ca++ and subsequently by a Ca(++)-calmodulin-mediated pathway in the synchronized BALB/c 3T3 fibroblasts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.