Abstract
The catalytic alpha subunit of the sodium-potassium ATPase, the target of digitalis glycosides, has three isoforms; the expression of these isoforms is tissue-specific and developmentally regulated. While the effect of pressure overload on Na, K-ATPase isoform expression has been studied in rodent heart, there are no systematic data on this question in hearts of larger animals, which differ from those of rodents both in isoform composition and in glycoside sensitivity. Thus, we investigated the expression of Na, K-ATPase isoforms in normal dog heart; we also examined the effect of experimental left ventricular hypertrophy on isoform expression. hypertrophy was produced by aortic banding. Expression was assessed by quantitative Northern and Western blotting, immunofluorescence, and 3H-ouabain binding. RNA blotting indicated that the alpha 3 isoform represented 11% of Na, K-ATPase mRNA in normal dog LV. Normal dog LV expressed alpha 1 and alpha 3 protein, but no detectable alpha 2; immunoreactive alpha 1 and alpha 3 protein were also present in Purkinje fibers. There was a statistically significant decrease in total expression of all alpha isoform mRNA's in hypertrophied dog LV, resulting in a greater proportion of alpha 1. The expression level of the alpha 3 isoform mRNA and protein was lower in hypertrophied hearts. These results indicate a greater proportion of alpha 1 isoform pumps in experimental canine hypertrophy. Thus, shifts in NA, K-ATPase isoforms occur in pressure-overloaded heart in large animals as well as rodents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.