Abstract

The avian eggshell gland (ESG) is a tissue specialized in transporting the Ca(2+) required for eggshell formation and represents a unique biological system in which the calcification process takes place in a circadian fashion. With the use of RNA fingerprinting, a set of genes differentially induced at the time of calcification was detected, one of which was identified as the alpha(1)-subunit of Na(+)-K(+)-ATPase. The gene was expressed in a circadian manner in both cell types populating the ESG, but in different temporal patterns, suggesting distinct mechanisms of regulation. Ca(2+) flux and mechanical strain were found to regulate gene expression in the inner glandular epithelium and the pseudostratified epithelium facing the lumen, respectively. Mechanical strain also affected gene expression in cell layers facing the lumen in other parts of the oviduct. Only the alpha(1)-isoform, not the alpha(2)- or alpha(3)-isoform, of Na(+)-K(+)-ATPase was expressed in the ESG. In summary, we demonstrate that the alpha(1)-subunit Na(+)-K(+)-ATPase gene is expressed in different epithelial cell types in the ESG and is regulated by various mechanisms, which may reflect the disparity in the physiological roles of the cells in the process of eggshell formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.