Abstract

BackgroundThe salt-secreting rectal gland plays a major role in elasmobranch osmoregulation, facilitating ion balance in hyperosmotic environments in a manner analogous to the teleost gill. Several studies have examined the central role of the sodium pump Na+/K+-ATPase in osmoregulatory tissues of euryhaline elasmobranch species, including regulation of Na+/K+-ATPase activity and abundance in response to salinity acclimation. However, while the transcriptional regulation of Na+/K+-ATPase in the teleost gill has been well documented the potential for mRNA regulation to facilitate rectal gland plasticity during salinity acclimation in elasmobranchs has not been examined. Therefore, in this study we acclimated Atlantic stingrays, Dasyatis sabina (Lesueur) from 11 to 34 ppt salinity over 3 days, and examined changes in plasma components as well as gill and rectal gland Na+/K+-ATPase α1 (atp1a1) mRNA expression.ResultsAcclimation to increased salinity did not affect hematocrit but resulted in significant increases in plasma osmolality, chloride and urea. Rectal gland atp1a1 mRNA expression was higher in 34 ppt-acclimated D. sabina vs. controls. There was no significant change in gill atp1a1 mRNA expression, however mRNA expression of this gene in the gill and rectal gland were negatively correlated.ConclusionsThis study demonstrates regulation of atp1a1 in the elasmobranch salt-secreting gland in response to salinity acclimation and a negative relationship between rectal gland and gill atp1a1 expression. These results support the hypothesis that the gill and rectal gland play opposing roles in ion balance with the gill potentially facilitating ion uptake in hypoosmotic environments. Future studies should further examine this possibility as well as potential differences in the regulation of Na+/K+-ATPase gene expression between euryhaline and stenohaline elasmobranch species.

Highlights

  • The salt-secreting rectal gland plays a major role in elasmobranch osmoregulation, facilitating ion balance in hyperosmotic environments in a manner analogous to the teleost gill

  • For the laboratory component of the 2014 Summer Field Program undergraduate course Stingray Physiology at the University of Southern Mississippi Gulf Coast Research Laboratory, we examined the regulation of plasma components as well as atp1a1 mRNA expression in the gill and rectal gland of D. sabina acclimated to increased environmental salinity

  • In this study we demonstrate for the first time the regulation of atp1a1 mRNA expression in the elasmobranch rectal gland in response to salinity acclimation, supporting the hypothesis that transcriptional regulation plays a role in the osmoregulatory plasticity of the euryhaline Atlantic stingray, Dasyatis sabina

Read more

Summary

Introduction

The salt-secreting rectal gland plays a major role in elasmobranch osmoregulation, facilitating ion balance in hyperosmotic environments in a manner analogous to the teleost gill. Several studies have examined the central role of the sodium pump Na+/K+-ATPase in osmoregulatory tissues of euryhaline elasmobranch species, including regulation of Na+/K+-ATPase activity and abundance in response to salinity acclimation. In this study we acclimated Atlantic stingrays, Dasyatis sabina (Lesueur) from 11 to 34 ppt salinity over 3 days, and examined changes in plasma components as well as gill and rectal gland Na+/K+-ATPase α1 (atp1a1) mRNA expression. The rectal gland is the primary site for sodium and chloride secretion in euryhaline and marine elasmobranchs, an osmoregulatory role analogous to that of the teleost gill. BMC Res Notes (2015) 8:219 that may experience frequent and/or rapid changes in salinity

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call