Abstract

Water-handling epithelia are sensitive to the osmotic environment. In this study, the effects of a hypo-osmotic challenge on carbachol (CCh)-induced fluid secretion was investigated using an ex vivo submandibular gland perfusion technique and intracellular pH and Ca(2+) measurements. The osmolality of the perfusion solution was altered to examine the response of the gland to a hypotonic challenge. The flow rate was increased by 34% with a 30% hypotonic solution (225 mosmol/kgH2O), although the Ca(2+) response was unchanged. The lowering of the external Cl(-) by 50% abolished this increase in the 30% hypotonic solution. Furthermore, bumetanide, an inhibitor of the Na(+)-K(+)-2Cl(-) cotransporter (NKCC1), completely inhibited the fluid secretion increase caused by the 30% hypotonic solution, and both the total amount of fluid and the flow rate were identical to those of the isotonic solution. This finding was confirmed by measuring the NKCC1 bumetanide-dependent NH4 (+) transport; Na(+)-K(+)-2Cl(-) transport was upregulated >40% by a 30% hypotonic challenge. Therefore, the increase in CCh-induced fluid secretion in response to hypotonic conditions can be attributed, to a large extent, to the specific activation of the NKCC1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call