Abstract
The active transport and intracellular accumulation of HCO(3) (-) by air-grown cells of the cyanobacterium Synechococcus UTEX 625 (PCC 6301) was strongly promoted by 25 millimolar Na(+).Na(+)-dependent HCO(3) (-) accumulation also resulted in a characteristic enhancement in the rate of photosynthetic O(2) evolution and CO(2) fixation. However, when Synechococcus was grown in standing culture, high rates of HCO(3) (-) transport and photosynthesis were observed in the absence of added Na(+). The internal HCO(3) (-) pool reached levels up to 50 millimolar, and an accumulation ratio as high as 970 was observed. Sodium enhanced HCO(3) (-) transport and accumulation in standing culture cells by about 25 to 30% compared with the five- to eightfold enhancement observed with air-grown cells. The ability of standing culture cells to utilize HCO(3) (-) from the medium in the absence of Na(+) was lost within 16 hours after transfer to air-grown culture and was reacquired during subsequent growth in standing culture. Studies using a mass spectrometer indicated that standing culture cells were also capable of active CO(2) transport involving a high-affinity transport system which was reversibly inhibited by H(2)S, as in the case for air-grown cells. The data are interpreted to indicate that Synechococcus possesses a constitutive CO(2) transport system, whereas Na(+)-dependent and Na(+)-independent HCO(3) (-) transport are inducible, depending upon the conditions of growth. Intracellular accumulation of HCO(3) (-) was always accompanied by a quenching of chlorophyll a fluorescence which was independent of CO(2) fixation. The extent of fluorescence quenching was highly dependent upon the size of the internal pool of HCO(3) (-) + CO(2). The pattern of fluorescence quenching observed in response to added HCO(3) (-) and Na(+) in air-grown and standing culture cells was highly characteristic for Na(+)-dependent and Na(+)-independent HCO(3) (-) accumulation. It was concluded that measurements of fluorescence quenching provide an indirect means for following HCO(3) (-) transport and the dynamics of intracellular HCO(3) (-) accumulation and dissipation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.