Abstract
Abstract Ab initio calculations at the Hartree-Fock Self Consistent Field (HF-SCF) level have been carried out to determine the interaction hypersurface for a sodium cation in the field of a hydroxylamine molecule. The quality of the selected wave function and basis set used in sampling the interaction energy surface of the complex has been tested and compared with alternatives. The Na + NH 2 OH surface is characterized by two main minima of −24.1 and −19.3 kcal mol −1 , in which the sodium cation is coordinated to oxygen and nitrogen of hydroxylamine, respectively. An analytical pair potential expression consisting of a Coulomb and several R − n terms was constructed to fit the 1352 calculated single energy points of the obtained energy surface. Subsequent Monte Carlo statistical thermodynamic simulations for a dilute solution of sodium chloride in hydroxylamine are also reported. The structure of the local solution environment around the cation is analyzed by means of radial and angular distribution functions, density maps, coordination number and energy distributions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.