Abstract

Inhibitors of the Na+/H+ exchanger isoform 1 (NHE-1) have been associated with peripheral neuropathy in rats and dogs. Recent studies suggest that NHE-1 plays an important role in mediating neuronal excitability. To investigate potential NHE-1-mediated mechanisms contributing to neuronal toxicity, we studied the effects of NHE-1 inhibitors on nerve and dorsal root ganglion (DRG) neurons isolated from the adult rat. Compound action potentials (CAPs) were recorded from electrically stimulated sections of isolated sciatic nerve/DRG/root preparations. Whole-cell patch-clamp technique was used to record fast and slow voltage-dependent Na+ currents from dissociated DRG neurons (29-41 microm). Exposures to 1 and 10 microM of a selective NHE-1 inhibitor reduced the amplitude of the CAP recorded from the dorsal root by 33% and 58%, respectively (p < 0.05). The compound had no effect on CAPs recorded from the ventral root. Perfusion of dissociated DRG neurons with NHE-1 inhibitors at 10 and 100 microM shifted voltage-dependent inactivation curves of fast Na+ current by as much as 11 mV (p < 0.001) in the hyperpolarizing direction. No shift was observed in slow Na+ currents. No statistically significant drug effects were observed on voltage-dependent activation or recovery from inactivation of either fast or slow Na+ currents. These results suggest that NHE-1 inhibitors may reduce peripheral neuronal excitability by shifting fast Na+ channels into the inactivated state under physiological conditions. Such effects may underlie peripheral neuropathies reported in rats and dogs with NHE-1 inhibitors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.