Abstract

Red cell volume regulation is important in sickle cell anemia because the rate and extent of HbS polymerization are strongly dependent on initial hemoglobin concentration. We have demonstrated that volume-sensitive K:Cl cotransport is highly active in SS whole blood and is capable of increasing MCHC. We now report that Na+/H+ exchange (Na/H EXC), which is capable of decreasing the MCHC of erythrocytes with pHi less than 7.2, is also very active in the blood of patients homozygous for HbS. The activity of Na/H EXC (maximum rate) was determined by measuring net Na+ influx (mmol/liter cell.hr = FU) driven by an outward H+ gradient in oxygenated, acid-loaded (pHi6.0), DIDS-treated SS cells. The Na/H EXC activity was 33 +/- 3 FU (mean +/- SE) (n = 19) in AA whites, 37 +/- 8 FU (n = 8) in AA blacks, and 85 +/- 15 FU (n = 14) in SS patients (P less than 0.005). Separation of SS cells into four density-defined fractions by density gradient revealed mean values of Na/H EXC four to five times higher in reticulocytes (SS1), discocytes (SS2) and dense discocytes (SS3), than in the fraction containing irreversibly sickled cells and dense discocytes (SS4). In contrast to K:Cl cotransport, which dramatically decreases after reticulocyte maturation, Na/H EXC persists well after reticulocyte maturation. In density-defined, normal AA red cells, Na/H EXC decreased monotonically as cell density increased. In SS and AA red cells, the magnitude of stimulation of Na/H EXC by cell shrinkage varied from individual to individual.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call