Abstract

Na(+)/H(+) exchange inhibition with HOE642 (cariporide) improves postischemic recovery of cardiac function, but the mechanisms of action remain speculative. Because Na(+)/H(+) exchange is activated on reperfusion, it was hypothesized that its inhibition delays realkalinization and decreases intracellular Na(+) and, via Na(+)/Ca(2+) exchange, Ca(2+) overload. Attenuated Ca(2+) overload and prolonged acidosis are known to be cardioprotective. Left ventricular developed and end-diastolic pressures were measured in isolated buffer-perfused rat hearts subjected to 30 minutes of no-flow ischemia and 30 minutes of reperfusion (37 degrees C) with or without 1 micromol/L HOE642 added to the perfusate 15 minutes before ischemia. Intracellular Ca(2+) concentration ([Ca(2+)](i)) and pH(i) were measured with aequorin (n=10 per group) and (31)P NMR spectroscopy (n=6 per group), respectively. HOE642 did not affect preischemic mechanical function, [Ca(2+)](i), or pH(i). Mechanical recovery after 30 minutes of reperfusion was substantially improved with HOE642: left ventricular developed pressure (in percent of preischemic values) was 92+/-3 versus 49+/-7 and left ventricular end-diastolic pressure was 16+/-3 versus 46+/-5 mm Hg (P<0.05 for HOE642-treated versus untreated hearts). End-ischemic [Ca(2+)](i) was significantly lower in HOE642-treated than in untreated hearts (1.04+/-0.06 versus 1.84+/-0. 02 micromol/L, P<0.05). Maximal intracellular Ca(2+) overload during the first 60 seconds of reperfusion was attenuated with HOE642 compared with untreated hearts: 2.0+/-0.3 versus 3.2+/-0.3 micromol/L (P<0.05). pH(i) was not different at end ischemia ( approximately 5.9+/-0.05). Realkalinization was similar in the first 90 seconds of reperfusion and significantly delayed in the next 3 minutes (eg, 6.8+/-0.07 in HOE642-treated hearts compared with 7. 2+/-0.07 in untreated hearts; P<0.05). HOE642 improves postischemic recovery by reducing Ca(2+) overload during ischemia and early reperfusion and by prolonging postischemic acidosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.