Abstract

Although cycasin (methylazoxymethanol beta-D-glucoside) is proposed to be a significant etiological factor for the prototypical neurodegenerative disorder Western Pacific amyotrophic lateral sclerosis and parkinsonism-dementia complex, the mechanism underlying transport of cycasin across the blood-brain barrier (BBB) is unknown. We examined cycasin transport in cultured bovine brain endothelial cells, a major element of the BBB. Cycasin was taken up into endothelial cells in a dose-dependent manner with maximal uptake observed at a concentration of 10 microM. Cycasin uptake was significantly inhibited by alpha-methyl-D-glucoside, a specific analogue for the Na+-dependent glucose transporter (SGLT), by the SGLT inhibitor phlorizin, by replacement of extracellular NaCl with LiCl, and by dinitrophenol (DNP), an inhibitor of energy metabolism. In addition, cycasin produced inward currents in a whole-cell voltage clamp configuration. Peak currents were observed at 10 microM with a trend toward reduction at higher concentrations, and currents were clearly blocked by alpha-methyl-D-glucoside, phlorizin, and DNP. In addition, cycasin never evoked currents in Na+-free extracellular solution. These results suggest that cycasin is selectively transported across brain endothelial cells, possibly across the BBB by a Na+/energy-dependent glucose transporter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.