Abstract
Kinetic analysis of the characteristics of phlorizin binding and of the Na+, sugar, and potential dependence of alpha-methylglucoside (alpha-MG) influx into isolated avian intestinal cells has pointed toward two alternative models for the transport mechanism (D. Restrepo and G. A. Kimmich, J. Membr. Biol. 89: 269-280, 1986). One of these models envisions a potential-dependent Na+ binding event (Na+ well concept) as a part of the molecular mechanism. The data reported here show that the apparent Km for Na+ for sugar transport is sharply dependent on the magnitude of the membrane potential. When intracellular Na+ is absent, the maximal velocity (Vmax) achieved for sugar influx is the same with or without a potential, although Vmax is obtained at a lower Na+ concentration when a potential is imposed (interior negative). Intracellular Na+ severely inhibits the influx of sugar in the absence of a potential, but this effect is largely overcome when a potential is present. The Vmax obtained when intracellular Na+ is present is a function of the potential. These results are consistent with a transport model in which Na+ binding to the Na+-dependent sugar carrier at the extracellular surface of the membrane and debinding at the inner surface of the membrane are both potential-dependent events.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.