Abstract
Pd/SSZ-13 has been proposed as a passive NOx adsorber (PNA) for low-temperature NOx adsorption. However, it remains challenging for Pd/SSZ-13 to work efficiently when suffering from phosphorus poisoning. Herein, we report a simple and efficient strategy to regenerate the phosphorus-poisoned Pd/SSZ-13 based on the cooperation between hydrothermal aging treatment and Na cocations. It was found that hydrothermal aging treatment enabled the redispersion of Pd and P-containing species in phosphorus-poisoned Pd/SSZ-13. Meanwhile, the presence of Na cocations significantly reduced the formation of AlPO4 and retained more paired Al sites for highly dispersed Pd2+ ions, which was of great importance for the recovery of adsorption performance. To our satisfaction, the restoration ratio of the adsorption capacity of poisoned Pd/SSZ-13 was >90% after regeneration. Strikingly, the NOx adsorption activities of phosphorus-poisoned Pd/SSZ-13 with phosphorus loadings of 0.2 and 0.4 mmol g-1 almost completely recovered upon regeneration. This study demonstrates the promoting effect of Na cocations on the regeneration of phosphorus-poisoned Pd/SSZ-13 by hydrothermal aging treatment, which provides useful guidance for the design of PNA materials with excellent durability for cold-start application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.