Abstract
Increases in intracellular free Ca(2+)+ concentration (Ca(2+)+ oscillations) occur during meiotic maturation and fertilization of mammalian oocytes but little is known about the mechanisms of Ca(2+) homeostasis in these cells. Cells extrude Ca(2+) from the cytosol using two main transport processes, the Ca(2+)-ATPase and the Na(+)-Ca(2+) exchanger. The aim of this study was to determine whether Na(+)-Ca(2+) exchange activity is present in immature and mature mouse oocytes. Na(+)-Ca(2+) exchange can be revealed by altering the Na(+) concentration gradient across the plasma membrane and recording intracellular free Ca(2+) concentrations using Ca(2+)-sensitive fluorescent dyes. Depletion of extracellular Na(+) caused an immediate increase in Ca(2+) concentration in immature oocytes and a delayed increase in mature oocytes. The Na(+) ionophore, monensin, caused an increase in intracellular Ca(2+) in immature oocytes similar to that induced by Na(+)-depleted medium. In mature oocytes, monensin had no effect on intracellular Ca(2+) but the time taken for Ca(2+) to reach a peak value on removal of extracellular Na(+) was significantly decreased. Finally, addition of Ca(2+) to immature oocytes incubated in Ca(2+)-free medium caused an increase in the concentration of intracellular Ca(2+) that was dependent upon the presence of extracellular Na(+). This effect was not seen in mature oocytes. The data show that Na(+)-Ca(2+) exchange occurs in immature and mature mouse oocytes and that Ca(2+) homeostasis in immature oocytes is more sensitive to manipulations that activate Na(+)-Ca(2+) exchange.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.