Abstract

The possible role of Na+-Ca2+ exchange in contributing to depolarization-induced increase in cytosolic Ca2+ concentration ([Ca2+]i) of isolated rat ventricular myocytes was investigated. Measured with the Ca2+-sensitive indicator quin 2, [Ca2+]i increased from 177 +/- 12 (mean +/- SE, n = 11) to 468 +/- 41 nM when cells were depolarized with solutions containing 50 mM KCl [high extracellular K+ concentration ([K+]o)]. Approximately 73% of this high-[K+]o-induced increase in [Ca2+]i was abolished by the Ca2+ channel blocker verapamil (5 microM). For cells pretreated with 10 mM caffeine to deplete the Ca2+ stored in sarcoplasmic reticulum, 50 mM KCl still produced an increase in [Ca2+]i, even in the presence of 5 microM verapamil. However, if extracellular Na+ was replaced by Li+ or tris(hydroxymethyl)aminomethane, this increase was completely abolished. The results suggest that, in addition to voltage-sensitive Ca2+ channels, voltage-sensitive Na+-Ca2+ exchange can also contribute to the increase in [Ca2+]i on depolarization. Therefore both Ca2+ transport systems may play important roles in regulating cardiac excitation and contraction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call