Abstract
Alzheimer's disease (AD) is associated with impaired glutamate clearance and depressed Na+/K+ ATPase levels in AD brain that might lead to a cellular ion imbalance. To test this hypothesis, [Na+] and [K+] were analyzed in postmortem brain samples of 12 normal and 16 AD individuals, and in cerebrospinal fluid (CSF) from AD patients and matched controls. Statistically significant increases in [Na+] in frontal (25%) and parietal cortex (20%) and in cerebellar [K+] (15%) were observed in AD samples compared to controls. CSF from AD patients and matched controls exhibited no differences, suggesting that tissue ion imbalances reflected changes in the intracellular compartment. Differences in cation concentrations between normal and AD brain samples were modeled by a 2-fold increase in intracellular [Na+] and an 8–15% increase in intracellular [K+]. Since amyloid beta peptide (Aβ) is an important contributor to AD brain pathology, we assessed how Aβ affects ion homeostasis in primary murine astrocytes, the most abundant cells in brain tissue. We demonstrate that treatment of astrocytes with the Aβ 25–35 peptide increases intracellular levels of Na+ (~2–3-fold) and K+ (~1.5-fold), which were associated with reduced levels of Na+/K+ ATPase and the Na+-dependent glutamate transporters, GLAST and GLT-1. Similar increases in astrocytic Na+ and K+ levels were also caused by Aβ 1–40, but not by Aβ 1–42 treatment. Our study suggests a previously unrecognized impairment in AD brain cell ion homeostasis that might be triggered by Aβ and could significantly affect electrophysiological activity of brain cells, contributing to the pathophysiology of AD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.