Abstract
One of the largest components of the delayed outward current active during normal physiology in many mammalian neurons such as medium spiny neurons of the striatum and tufted–mitral cells of the olfactory bulb, has gone unnoticed and is due to a Na+-activated-K+-current. Previous studies of K+ currents in mammalian neurons may have overlooked this large outward component because the sodium channel blocker tetrodotoxin (TTX) is typically used in such studies; we find that TTX also eliminates this delayed outward component as a secondary consequence. Unexpectedly we found that the activity of a persistent inward sodium current (persistent INa) is highly effective in activating this large Na+-dependent (TTX-sensitive) delayed outward current. Using siRNA techniques we identified SLO2.2 (Slack) channels as carriers of this delayed outward current. These findings have far reaching implications for many aspects of cellular and systems neuroscience, as well as clinical neurology and pharmacology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.