Abstract

The vanilloid receptor 1 (VR1) is a cation channel expressed predominantly by nociceptive sensory neurons and is activated by a wide array of pain-producing stimuli, including capsaicin, noxious heat, and low pH. Although the behavioral effects of injected capsaicin and the VR1 antagonist capsazepine have indicated a potential role for VR1 in the generation and maintenance of persistent pain states, species differences in the molecular pharmacology of VR1 and a limited number of selective ligands have made VR1 difficult to study in vivo. N-(4-Tertiarybutylphenyl)-4-(3-cholorphyridin-2-yl)tetrahydropryazine-1(2H)-carbox-amide (BCTC) is a recently described inhibitor of capsaicin- and acid-mediated currents at rat VR1. Here, we report the effects of BCTC on acute, inflammatory, and neuropathic pain in rats. Administration of BCTC (30 mg/kg p.o.) significantly reduced both mechanical and thermal hyperalgesia induced by intraplantar injection of 30 micro g of capsaicin. In rats with Freund's complete adjuvantinduced inflammation, BCTC significantly reduced the accompanying thermal and mechanical hyperalgesia (3 mg/kg and 10 mg/kg p.o., respectively). BCTC also reduced mechanical hyperalgesia and tactile allodynia 2 weeks after partial sciatic nerve injury (10 and 30 mg/kg p.o.). BCTC did not affect motor performance on the rotarod after administration of doses up to 50 mg/kg p.o. These data suggest a role for VR1 in persistent and chronic pain arising from inflammation or nerve injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.