Abstract

Methylation of cytosine is a common biological process both in prokaryotic and eukaryotic cells. In addition to 5-methylcytosine (5mC), some bacterial species contain in their genome N(4) -methylcytosine (N4mC). Methylation at C5 has been shown to enhance the formation of pyrimidine dimeric photoproducts but nothing is known of the effect of N4 methylation on UV-induced DNA damage. In the present work, we compared the yield and the nature of bipyrimidine photoproducts induced in a series of trinucleotides exhibiting a TXG sequence where X is either T, C, 5mC or N4mC. HPLC associated to tandem mass spectrometry was used to quantify cyclobutane pyrimidine dimers (CPD), (6-4) photoproducts (64PP) and their Dewar valence isomer. Methylation at position N4 was found to drastically increase the reactivity of C upon exposure to both UVC and UVB and to favor the formation of 64PP. In contrast methylation at C5 increased the yield of CPD at the expense of 64PP. In addition, enhancement of photoreactivity by C5 methylation was much higher in the UVB than in the UVC range. These results show the drastic effect of the methylation site on the photochemistry of cytosine.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.