Abstract
A previously unknown polyamine conjugate that accumulates in senescing ovaries of pea (Pisum sativum L.) was shown by mass spectrometry, nuclear magnetic resonance, and chemical synthesis to be N4-hexanoylspermidine (hexanoyl-spd) This structure was indicated by analysis of the dansylated polyamine using fast atom bombardment mass spectrometry, following purification by high-performance liquid chromatography. Furthermore, acid hydrolysis of the compound yielded spermidine and hexanoic acid. 1H-nuclear magnetic resonance suggested that spermidine was substituted at N4 in the conjugate. Hexanoyl-spd was synthesized, and its didansyl derivative was shown to have an identical mass spectrum and high-performance liquid chromatography retention time as the derivatized natural compound. Further confirmation of its structure was obtained by comparison of the synthetic and natural polyamines as trifluoroacetyl derivatives using gas chromatography-mass spectrometry. This new polyamine conjugate is present in pea ovaries at low levels at anthesis and its concentration remains low in developing seeded fruit or in parthenocarpic fruit that have been induced by application of growth regulators to emasculated flowers or by topping the plant. Conjugate levels are also low in parthenocarpic fruit induced naturally in the slender (la crys) mutant. However, levels of hexanoyl-spd increase progressively in senescing petals and ovaries, beginning at anthesis or 2 d later, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.