Abstract
Agricultural soil is a major source of nitrous oxide (N2O), nitric oxide (NO) and ammonia (NH3). Little information is available on emissions of these gases from soils amended with organic fertilizers at different soil water contents. N2O, NO and NH3 emissions were measured in large-scale incubations of a fresh sandy loam soil and amended with four organic fertilizers, [poultry litter (PL), composted plant residues (CP), sewage sludge pellets (SP) and cattle farm yard manure (CM)], urea fertilizer (UA) or a zero-N control (ZR) for 38 days. Fertilizers were added to soil at 40, 60 or 80% water-filled pore space (WFPS). The results showed that urea and organic fertilizer were important sources of N2O and NO. Total N2O and NO emissions from UA ranged from 0.04 to 0.62%, and 0.23 to 1.55% of applied N, respectively. Total N2O and NO emissions from organic fertilizer treatments ranged from 0.01 to 1.65%, and <0.01 to 0.55% of applied N, respectively. The lower N2O and NO emissions from CP and CM suggested that applying N is these forms could be a useful mitigation option. Comparison of the NO-N/N2O-N ratio suggested that nitrification was more dominant in UA whereas denitrification was more dominant in the organic fertilizer treatments. Most N was lost from PL and UA as NH3, and this was not influenced significantly by WFPS. Emissions of NH3 from UA and PL ranged from 62.4 to 69.6%, and 3.17 to 6.11% of applied N, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.