Abstract

Abstract The impact of different forms of nitrogen input, biochar amendments and their combination on the yield-scaled N2O emissions were investigated during the cultivation of a representative commercial crop. A field randomized block design with inorganic/organic fertilization and biochar amendment was established during a crop cycle of drip-irrigated broccoli. N2O emissions were measured with a static chamber in crop rows and in the bare soil control. N2O emissions were triggered by N fertigation and heavy rainfall events and increased as the plants grew. Organic fertilization resulted in higher N2O emissions than mineral fertilization and these treatments also resulted in the highest peak emissions after fertigation events. Biochar had a significant mitigation effect in hot moments registered immediately after fertilization in organic fertilization treatments. However, biochar caused a slight but not significant reduction in cumulative N2O emissions in all treatments. Peak emissions after heavy rainfall were similar in all the treatments and were not affected by the biochar amendment. Biochar usage decreased the soil bulk density in the inorganic fertilization treatments and facilitated N uptake by the plants. Biochar addition resulted in a significant reduction in yield-scaled emissions, which was more pronounced in the inorganic fertilizer treatments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call