Abstract

This study reports the rapid and effective nitrogen doping of ordered, mesoporous TiO2 thin films using nitrogen/argon (N2/Ar) plasma. The resulting nitrogen-doped TiO2 (N–TiO2) films show significant enhancement in both visible light absorption and photocatalytic activity. The cubic ordered mesoporous TiO2 thin films are prepared via a sol–gel method using titanium tetrachloride (TiCl4) as precursor and triblock copolymer Pluronic F127 as the template. Following brief calcination, the TiO2 films are treated with N2/Ar plasma under controlled conditions of reactive gas pressure, microwave power, and plasma exposure duration. To vary the degree of nitrogen doping, the plasma exposure time was varied from zero up to 210 min. The nitrogen content of the films increases with plasma exposure duration, up to over 3 at% N. X-ray photoelectron spectroscopic (XPS) analyses and UV–vis absorbance spectra of N–TiO2 films indicate that the incorporated N atoms reduce the band gap of TiO2 and thus enhance the absorption of visible light. Finally, the visible-light photocatalytic activity of N–TiO2 films is determined from the photocatalytic degradation of methylene blue under visible-light illumination (with a 455 nm LED). The N–TiO2 films prepared by 150 min treatment show the optimum photocatalytic activity with a pseudo-first order rate coefficient of 0.24 h−1, which is six times greater than that of undoped TiO2 films. Treatment for excessive time (e.g. 210 min) leads to a decline in photocatalytic activity due to coarsening of the porous structure. The present study suggests that plasma-induced doping is a promising approach to enable the efficient incorporation of heteroatoms into surfactant-templated TiO2 thin films while maintaining their nanostructures, thereby leading to the significant enhancement of visible-light photoactivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.