Abstract

Thromboxane A2 (TXA2) promotes ischemic stroke injury and has strong effects in vascular contraction and vascular endothelial cell dysfunction. Agents that reduce TXA2 production have potential for ameliorating neural injury in ischemic stroke. Thromboxane synthetase (TXS) is essential for TXA2 production, and TXS inhibitors have been developed as drugs for the prevention and treatment of stroke. However, ozagrel, a typical TXS inhibitor currently in clinical use, must be delivered via intravenous injection (I.V.). N2, 4-(2-(1H-imidazol-1-yl) ethoxy)-3-methoxybenzoate, is a potential thromboxane synthetase (TXS) inhibitor, which is being developed as an orally available formulation. The aim of this study was to investigate the effects of N2 on focal cerebral ischemia–reperfusion injury and related mechanisms. Neurological deficits, a Y-maze test and infarct volume were measured to evaluate the effects of N2 post-treatment on middle cerebral artery occlusion (MCAO)-induced ischemia/reperfusion (I/R) injury in rats. Furthermore, the influence of N2 on U46619-induced rat aorta contraction was investigated ex vivo. Moreover, we investigated the protective effects of N2 on rat brain microvessel endothelial cells (RBMECs) in hypoxia/deoxygenating (H/R) induced by Na2S2O4 in vitro. Cell viability and TXA2 biosynthesis were measured by 3-(4, 5-dimethylthiazol-2-yl)- 195 2, 5-diphenyltetrazolium bromide (MTT) and enzyme-linked immunosorbent assay (ELISA) assays, respectively. The results showed that N2 treatment effectively improves performance in neurological deficit and the Y-maze test and reduces the infarct volume in I/R rats. U46619-induced rat aorta contraction was inhibited by N2 ex vivo. Furthermore, N2 incubation improved the morphology of RBMECs, increased cell viability, and suppressed TXA2 production by inhibiting TXS during H/R damage.In summary, this study demonstrated that N2 was neural protective in focal cerebral I/R injury, which might be associated with the effects of N2 on endothelium protection and vascular contraction inhibition. In depth, the mechanisms underlying this phenomenon might be the influence of N2 on TXA2 production targeting TXS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.