Abstract

In the extreme thermophile Thermus thermophilus, a disruption mutant of a gene homologous to speB (coding for agmatinase = agmatine ureohydrolase) accumulated N1-aminopropylagmatine (N8-amidino-1,8-diamino-4-azaoctane, N8-amidinospermidine), a new compound, whereas all other polyamines produced by the wild-type strain were absent from the cells. Double disruption of speB and speE (polyamine aminopropyltransferase) resulted in the disappearance of N1-aminopropylagmatine and the accumulation of agmatine. These results suggested the following. 1) N1-Aminopropylagmatine is produced from agmatine by the action of an enzyme coded by speE. 2) N1-Aminopropylagmatine is a metabolic intermediate in the biosynthesis of unique polyamines found in the thermophile. 3) N1-Aminopropylagmatine is a substrate of the SpeB homolog. They further suggest a new biosynthetic pathway in T. thermophilus, by which polyamines are formed from agmatine via N1-aminopropylagmatine. To confirm our speculation, we purified the expression product of the speB homolog and confirmed that the enzyme hydrolyzes N1-aminopropylagmatine to spermidine but does not act on agmatine.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.