Abstract

When stimulating the mixed nerve to record evoked potential, both sensory and motor fibers are activated before entering the spinal cord. The N10 potential has been described as an antidromic motor evoked potential based on results obtained by recording at the anterior midneck. In the present study, we examined the changes in latencies of Erb's potential, N10, and N13 by stimulating the median nerve distally at the wrist and proximally at the elbow. The conduction velocity of N10 calculated by the difference between N10 latencies at the two stimulation points was consistent with motor conduction velocity, although N13 conduction velocity estimated by the same method reflected a sensory conduction velocity. A positive relation was also observed between the indirect latency from the stimulation point to the anterior root as calculated using the equation (F - M - 1) / 2 (ms) and the direct latency to the negative peak of the N10 potential. Our data support the notion that N10 represents antidromic motor potential originating in the spinal entry zone of the anterior root.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call