Abstract

In this article, we give the sharp bounds of probabilistic Kolmogorov N,δ-widths and probabilistic linear N,δ-widths of the multivariate Sobolev space W2A with common smoothness on a Sq norm equipped with the Gaussian measure μ, where A⊂Rd is a finite set. And we obtain the sharp bounds of average width from the results of the probabilistic widths. These results develop the theory of approximation of functions and play important roles in the research of related approximation algorithms for Sobolev spaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.