Abstract

WASP- and Ena/VASP-family proteins have been reported to regulate the cortical actin cytoskeleton as downstream effectors of the Rho-family small G-proteins Rac and Cdc42, but their functions are little understood. We observed the localization of the WASP family proteins, N-WASP and WAVE, and the Ena/VASP family protein, Mena, in protruding lamellipodia. Rat fibroblast cell line 3Y1 protruded lamellipodia on poly-L-lysine-coated substrate without any trophic factor. N-WASP and Cdc42 were concentrated along the actin filament bundles of microspikes but not at the tips. By immunofluorescence and immunoelectron microscopy, both WAVE and Mena were observed to localize at the lamellipodium edge. Interestingly, Mena tended to concentrate at the microspike tips but WAVE did not. At the edge of the lamellipodium, the correlation between the fluorescence from Mena and actin filaments stained with the specific antibody and rhodamine-phalloidin, respectively, was much higher than that between WAVE and actin filament. The Ena/VASP homology 2 (EVH2) domain of avian Ena, an avian homolog of Mena, was localized to the lamellipodium edge and concentrated at the tip of microspikes. The SCAR homology domain (SHD) of human WAVE was distributed along the lamellipodium edge. These results indicate that N-WASP, WAVE and Mena have different roles in the regulation of the cortical actin cytoskeleton in the protruding lamellipodium. WAVE and Mena should be recruited to the lamellipodium edge through SHD and the EVH2 domain, respectively, to regulate the actin polymerization near the cell membrane. N-WASP should regulate the formation of the actin filament bundle in addition to activating Arp2/3 complex in lamellipodium under the control of Cdc42.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call