Abstract

Charge-enhanced Brønsted acid organocatalysts with electron-withdrawing substituents were synthesized, and their relative acidities were characterized by computations, 1:1 binding equilibrium constants (K1:1) with a UV-vis active sensor, 31P NMR shifts upon coordination with triethylphosphine oxide, and in one case by infrared spectroscopy. Pseudo-first-order rate constants were determined for the Friedel-Crafts alkylations of N-methylindole with trans-β-nitrostyrene and 2,2,2-trifluoroacetophenone and the Diels-Alder reaction of cyclopentadiene with methyl vinyl ketone. These results along with kinetic isotope effect determinations revealed that the rate-determining step in the Friedel-Crafts transformations can shift from carbon-carbon bond formation to proton transfer to the catalyst's conjugate base. This leads to an inverted parabolic reaction rate profile and slower reactions with more acidic catalysts in some cases. Electron-withdrawing groups placed on the N-vinyl and N-aryl substituents of hydroxypyridinium ion salts lead to enhanced acidities, more acidic catalysts than trifluoroacetic acid, and a linear correlation between the logarithms of the Diels-Alder rate constants and measured K1:1 values.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.