Abstract

AbstractN‐type conjugated polymers as the semiconducting component of organic electrochemical transistors (OECTs) are still undeveloped with respect to their p‐type counterparts. Herein, we report two rigid n‐type conjugated polymers bearing oligo(ethylene glycol) (OEG) side chains, PgNaN and PgNgN, which demonstrated an essentially torsion‐free π‐conjugated backbone. The planarity and electron‐deficient rigid structures enable the resulting polymers to achieve high electron mobility in an OECT device of up to the 10−3 cm2 V−1 s−1 range, with a deep‐lying LUMO energy level lower than −4.0 eV. Prominently, the polymers exhibited a high device performance with a maximum dimensionally normalized transconductance of 0.212 S cm−1 and the product of charge‐carrier mobility μ and volumetric capacitance C* of 0.662±0.113 F cm−1 V−1 s−1, which are among the highest in n‐type conjugated polymers reported to date. Moreover, the polymers are synthesized via a metal‐free aldol‐condensation polymerization, which is beneficial to their application in bioelectronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.