Abstract

In this paper, n type nonvolatile memory devices were fabricated by implanting a bilayer (rGO sheets/Au NP) floating gates, using n-type polymer semiconductor, poly {[N, N′ bis (2octyldodecyl) - naphthalene-1, 4, 5, 8 - bis (dicarboximide)-2,6-diyl] – alt - 5,5′ - (2, 2′ bithiophene)} [P(NDI2OD-T2)n]. In the developed organic field effect transistor memory devices, electrons are trapped/detrapped in rGO sheet/Au NP's nano-floating gates by controlling the charge carrier density in the active layer through back gate bias control. The devices showed interesting non-volatile memory properties with a large memory window of ∼34 V, a programming-reading-erasing cycling endurance of 103 times and most importantly, an improved retention time characteristics estimated by extrapolation (longer than the technological requirement of commercial memory devices (>10 years)). This approach provides a great potential for fabricating high-performances organic nano-floating gate memory devices and opens up a new way for the development of next-generation non-volatile memory devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call