Abstract

n‐Type organic electrochemical transistors (OECTs) are fundamental building blocks of biosensors and complementary circuits along with p‐type. Yet, their development has been lagging behind their p‐type counterparts since first emergence in 2016. The key component of an OECT is the channel material, which is an organic mixed ionic‐electronic conductor (OMIEC), that dictates the function and performance of the OECT via interactions with electrolyte ions. OMIECs of OECTs are benchmarked by the product of charge‐carrier mobility (μ) and volumetric capacitance (C*), μC*. Significant progress is made for the development of novel n‐type OMIECs, with best μC* now reaching 180 F cm−1 V−1 s−1. This review elucidates such material development progress of n‐type OMIECs with emphases on the underlying molecular design strategies and structure‐property relationships. Furthermore, the operational stability of channel materials and the applications of n‐type OECTs are also discussed to offer readers a comprehensive view of the field. Finally, current limitations are discussed along with outlook.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.