Abstract

Despite the significant progress in thermoelectric composites in recent years, the enhancement of thermoelectric performance is mainly based on weak interfacial interactions, although strong interactions (such as covalent-bonding grafting) are expected to display a more significant effect. In this study, the thermoelectric composites are prepared using a covalent-bond grafting method between tin selenide (SnSe) and single-walled carbon nanotubes (SWCNTs) via a simple solvothermal process. The as-prepared highly flexible composite film shows an n-type thermoelectric characteristic. An optimized power factor of 58.86 μW m-1 K-2 at room temperature has been realized for the composite film with 16 wt % SWCNT loading. Finally, a flexible thermoelectric generator (TEG) consisting of three couples of p/n films is assembled, which can generate an open-circuit voltage of 15.55 μV and a maximum output power of 1.38 μW at a temperature gradient of 60 K. The results open a new avenue for the fabrication of n-type flexible films and TEG based on covalent-bonding-grafted composites and will benefit the design strategy of high-performance thermoelectric composites and flexible TEGs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.