Abstract

In this letter, n-type doping of GaAs nanowires grown by metal–organic vapor phase epitaxy in the vapor–liquid–solid growth mode on (111)B GaAs substrates is reported. A low growth temperature of 400°C is adjusted in order to exclude shell growth. The impact of doping precursors on the morphology of GaAs nanowires was investigated. Tetraethyl tin as doping precursor enables heavily n-type doped GaAs nanowires in a relatively small process window while no doping effect could be found for ditertiarybutylsilane. Electrical measurements carried out on single nanowires reveal an axially non-uniform doping profile. Within a number of wires from the same run, the donor concentrations ND of GaAs nanowires are found to vary from 7 × 1017 cm-3 to 2 × 1018 cm-3. The n-type conductivity is proven by the transfer characteristics of fabricated nanowire metal–insulator-semiconductor field-effect transistor devices.

Highlights

  • Novel, quasi one-dimensional structures, like III-V semiconductor nanowires, may act as key elements in future nanoscaled optoelectronic devices [1,2,3]

  • The doping mechanism through side facet deposition, reported in various publications [14,23], can be excluded. This enables a separate investigation of vapor–liquid solid (VLS)-grown GaAs nanowires

  • We have found the relatively small process window (0.04 ≤ IV/III ≤ 0.08) for the successful n-type doping of VLS-grown GaAs nanowires with high charge carrier densities using TESn

Read more

Summary

Introduction

Quasi one-dimensional structures, like III-V semiconductor nanowires, may act as key elements in future nanoscaled optoelectronic devices [1,2,3]. There are only a very few publications describing initial doping results of III-V compound semiconductor nanowires with a high charge carrier density. N-type doping of GaAs nanowires grown by VLS using two different precursor materials, ditertiarybutylsilane (DitBuSi) and tetraethyl tin (TESn), is reported.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.