Abstract

We investigate the improvement of p–i–n type thin-film silicon (Si) solar cells by employing a hydrogenated n-type amorphous Si (n-a-Si:H)-based bilayer. The initial conversion efficiency (η) of a-Si:H single-junction solar cells is improved from 9.2 to 10.0%. The developed n-a-Si:H-based bilayer is also suitable for a-Si:H/hydgrogenated microcrystalline Si (μc-Si:H) double-junction solar cells, and thus initial η is improved from 10.4 to 10.8%. With a further optimization, initial η of 11.3% and stabilized η of 10.1% are achieved. Since the n-a-Si:H-based bilayer is easily formed using a conventional process, it can be a promising option for cost-effective mass production of large-area thin-film Si solar modules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.