Abstract

Pharmacotherapy for inflammatory bowel disease (IBD) is difficult, and some patients do not respond to currently available treatments. Therefore, the discovery of novel anti-IBD agents is imperative. Our aim was the synthesis of lipidated analogs of sialorphin and the in vitro characterization of their effect on the degradation of Met-enkephalin by neutral endopeptidase (NEP). We also investigated in vivo whether the most active inhibitor (peptide VIII) selected in the in vitro studies could be a potential candidate for the treatment of colitis. Peptides were synthesized by the solid-phase method. Molecular modeling technique was used to explain the effect of fatty acid chain length in sialorphin analogs on the ligand-enzyme interactions. The anti-inflammatory effect was evaluated in the dextran sulphate sodium (DSS)-induced model of colitis in mice. Peptide VIII containing stearic acid turned out to be in vitro the strongest inhibitor of NEP. We have also shown that the length of the chain of stearic acid fits the size of the grove of NEP. Peptides VII and VIII exhibited in vivo similar anti-inflammatory activity. Our results suggest that lipidation of sialorphin molecule is a promising direction in the search for NEP inhibitors that protect enkephalins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call