Abstract

Extracellular contractile injection systems (eCISs) are widespread bacterial nanomachines that resemble T4 phage tail. As a typical eCIS, Photorhabdus virulence cassette (PVC) was proposed to inject toxins into eukaryotic cells by puncturing the cell membrane from outside. This makes it an ideal tool for protein delivery in biomedical research. However, how to manipulate this nanocomplex as a molecular syringe is still undetermined. Here, we identify that one group of N-terminal signal peptide (SP) sequences are crucial for the effector loading into the inner tube of PVC complex. By application of genetic operation, cryo–electron microscopy, in vitro translocation assays, and animal experiments, we show that, under the guidance of the SP, numerous prokaryotic and eukaryotic proteins can be loaded into PVC to exert their functions across cell membranes. We therefore might customize PVC as a potent protein delivery nanosyringe for biotherapy by selecting cargo proteins in a broad spectrum, regardless of their species, sizes, and charges.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.