Abstract

Serum amyloid A (SAA) is an acute phase protein, which undergoes structural changes and deposits in the extracellular matrix, causing organ damage. Systemic AA amyloidosis is a relatively common amyloid subtype among the more than 30 amyloid subtypes, but the mechanism of amyloid fibril formation remains unclear. In this study, we investigated the tissue distribution of SAA derived peptides in formalin-fixed paraffin embedded (FFPE) specimens of human myocardium with amyloidosis using matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS). In the whole SAA protein, four trypsin-digested peptides in the range of SAA2-67 were visualized and the N-terminal peptide; SAA2-15, was selectively localized in the Congo red-positive region. The C-terminal peptides; SAA47-62, SAA48-62, and SAA63-67 were detected not only in the Congo red-positive region but also in the surrounding negative region. Our results demonstrate that the N-terminal SAA2-15 plays a critical role in the formation of AA amyloid fibril, as previously reported. Roles of the C-terminal peptides require further investigation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call