Abstract

Growth hormone antagonist (GHA), an analog of growth hormone (GH), can inhibit GH action and treat acromegaly. However, GHA suffers from a short plasma half-life of 15-20 min that has limited its clinical application. PEGylation, conjugation with polyethylene glycol (PEG), can increase the plasma half-life of GHA. Single PEG attachment (mono-PEGylation) at N-terminus of GHA has the advantages of product homogeneity and minimization of the bioactivity loss. Conjugation of large PEG molecule may increase the plasma half-life but could potentially decrease the bioactivity of GHA, due to the steric shielding effect of PEG. Thus, N-terminal mono-PEGylation of GHA with 20 kDa and 40 kDa PEG were used to look for a balance of the two competing factors. Sedimentation velocity analysis suggested that 40 kDa PEG was more efficient than 20 kDa PEG to elongate the molecular shape of the conjugate. As reflected by marginal suppression of insulin-like growth factor I (IGF-I), GHA conjugated with 40 kDa PEG was statistically indistinguishable from the saline solution that could not inhibit GH action. In contrast, GHA conjugated with 20kDa PEG can apparently inhibit GH action, as reflected by IGF-I suppression of 30-43%. Thus, our work demonstrated the effective therapeutic potency of N-terminally mono-PEGylated GHA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.